Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(16)2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34445642

RESUMO

Endocytosis provides the cellular nutrition and homeostasis of organisms, but pathogens often take advantage of this entry point to infect host cells. This is counteracted by phagocytosis that plays a key role in the protection against invading microbes both during the initial engulfment of pathogens and in the clearance of infected cells. Phagocytic cells balance two vital functions: preventing the accumulation of cell corpses to avoid pathological inflammation and autoimmunity, whilst maintaining host defence. In this review, we compare elements of phagocytosis in mammals and the nematode Caenorhabditis elegans. Initial recognition of infection requires different mechanisms. In mammals, pattern recognition receptors bind pathogens directly, whereas activation of the innate immune response in the nematode rather relies on the detection of cellular damage. In contrast, molecules involved in efferocytosis-the engulfment and elimination of dying cells and cell debris-are highly conserved between the two species. Therefore, C. elegans is a powerful model to research mechanisms of the phagocytic machinery. Finally, we show that both mammalian and worm studies help to understand how the two phagocytic functions are interconnected: emerging data suggest the activation of innate immunity as a consequence of defective apoptotic cell clearance.


Assuntos
Apoptose , Imunidade Inata/imunologia , Fagócitos/fisiologia , Fagocitose , Animais , Caenorhabditis elegans , Humanos , Transdução de Sinais
2.
Cancers (Basel) ; 13(14)2021 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-34298674

RESUMO

Recently, it has become evident that mitochondrial transfer (MT) plays a crucial role in the acquisition of cancer drug resistance in many hematologic malignancies; however, for multiple myeloma, there is a need to generate novel data to better understand this mechanism. Here, we show that primary myeloma cells (MMs) respond to an increasing concentration of chemotherapeutic drugs with an increase in the acquisition of mitochondria from autologous bone marrow stromal cells (BM-MSCs), whereupon survival and adenosine triphosphate levels of MMs increase, while the mitochondrial superoxide levels decrease in MMs. These changes are proportional to the amount of incorporated BM-MSC-derived mitochondria and to the concentration of the used drug, but seem independent from the type and mechanism of action of chemotherapeutics. In parallel, BM-MSCs also incorporate an increasing amount of MM cell-derived mitochondria accompanied by an elevation of superoxide levels. Using the therapeutic antibodies Daratumumab, Isatuximab, or Elotuzumab, no similar effect was observed regarding the MT. Our research shows that MT occurs via tunneling nanotubes and partial cell fusion with extreme increases under the influence of chemotherapeutic drugs, but its inhibition is limited. However, the supportive effect of stromal cells can be effectively avoided by influencing the metabolism of myeloma cells with the concomitant use of chemotherapeutic agents and an inhibitor of oxidative phosphorylation.

3.
Immunol Lett ; 237: 42-57, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34186155

RESUMO

The involvement of complement in the regulation of antibody responses has been known for long. By now several additional B cell functions - including cytokine production and antigen presentation - have also been shown to be regulated by complement proteins. Most of these important activities are mediated by receptors interacting with activation fragments of the central component of the complement system C3, such as C3b, iC3b and C3d, which are covalently attached to antigens and immune complexes. This review summarizes the role of complement receptors interacting with these ligands, namely CR1 (CD35), CR2 (CD21), CR3 (CD11b/CD18) and CR4 (CD11c/CD18) expressed by B cells in health and disease. Although we focus on human B lymphocytes, we also aim to call the attention to important differences between human and mouse systems.


Assuntos
Linfócitos B/imunologia , Complemento C3/imunologia , Receptores de Complemento/imunologia , Animais , Formação de Anticorpos , Doenças Autoimunes/genética , Doenças Autoimunes/imunologia , Divisão Celular , Expressão Gênica , Humanos , Memória Imunológica , Ligantes , Camundongos , Especificidade de Órgãos , Receptores de Antígenos de Linfócitos B/imunologia , Receptores de Complemento/química , Receptores de Complemento/genética , Especificidade da Espécie , Relação Estrutura-Atividade
4.
PLoS One ; 15(5): e0232432, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32365067

RESUMO

CR3 and CR4, the leukocyte specific ß2-integrins, involved in cellular adherence, migration and phagocytosis, are often assumed to have similar functions. Previously however, we proved that under physiological conditions CR4 is dominant in the adhesion to fibrinogen of human monocyte-derived macrophages (MDMs) and dendritic cells (MDDCs). Here, using inflammatory conditions, we provide further evidence that the expression and function of CR3 and CR4 are not identical in these cell types. We found that LPS treatment changes their expression differently on MDMs and MDDCs, suggesting a cell type specific regulation. Using mAb24, specific for the high affinity conformation of CD18, we proved that the activation and recycling of ß2-integrins is significantly enhanced upon LPS treatment. Adherence to fibrinogen was assessed by two fundamentally different approaches: a classical adhesion assay and a computer-controlled micropipette, capable of measuring adhesion strength. While both receptors participated in adhesion, we demonstrated that CR4 exerts a dominant role in the strong attachment of MDDCs. Studying the formation of podosomes we found that MDMs retain podosome formation after LPS activation, whereas MDDCs lose this ability, resulting in a significantly reduced adhesion force and an altered cellular distribution of CR3 and CR4. Our results suggest that inflammatory conditions reshape differentially the expression and role of CR3 and CR4 in macrophages and dendritic cells.


Assuntos
Células Dendríticas/imunologia , Inflamação/imunologia , Integrina alfaXbeta2/imunologia , Antígeno de Macrófago 1/imunologia , Macrófagos/imunologia , Podossomos/imunologia , Anticorpos Bloqueadores/imunologia , Antígenos CD18/imunologia , Adesão Celular/imunologia , Adesão Celular/fisiologia , Diferenciação Celular/imunologia , Movimento Celular/imunologia , Movimento Celular/fisiologia , Células Dendríticas/patologia , Células Dendríticas/fisiologia , Fibrinogênio/imunologia , Humanos , Técnicas In Vitro , Inflamação/patologia , Lipopolissacarídeos/imunologia , Macrófagos/patologia , Macrófagos/fisiologia , Fagocitose/imunologia , Fagocitose/fisiologia , Podossomos/patologia
5.
FEBS Lett ; 594(16): 2695-2713, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31989596

RESUMO

The complement system is a major humoral component of immunity and is essential for the fast elimination of pathogens invading the body. In addition to its indispensable role in innate immunity, the complement system is also involved in pathogen clearance during the effector phase of adaptive immunity. The fastest way of killing the invader is lysis by the membrane attack complex, which is formed by the terminal components of the complement cascade. Not all pathogens are lysed however and, if opsonized by a variety of molecules, they undergo phagocytosis and disposal inside immune cells. The most important complement-derived opsonins are C1q, the first component of the classical pathway, MBL, the initiator of the lectin pathway and C3-derived activation fragments, including C3b, iC3b and C3d, which all serve as ligands for their corresponding receptors. In this review, we discuss how complement receptors are utilized by various immune cells to tackle invading microbes, or by pathogens to evade host response.


Assuntos
Via Clássica do Complemento , Lectina de Ligação a Manose da Via do Complemento , Proteínas do Sistema Complemento/imunologia , Interações Hospedeiro-Patógeno/imunologia , Infecções/imunologia , Receptores de Complemento/imunologia , Animais , Humanos , Infecções/patologia
6.
mSphere ; 4(4)2019 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-31434748

RESUMO

Candida parapsilosis is an emerging non-albicans Candida species that largely affects low-birth-weight infants and immunocompromised patients. Fungal pathogenesis is promoted by the dynamic expression of diverse virulence factors, with secreted proteolytic enzymes being linked to the establishment and progression of disease. Although secreted aspartyl proteases (Sap) are critical for Candida albicans pathogenicity, their role in C. parapsilosis is poorly elucidated. In the present study, we aimed to examine the contribution of C. parapsilosisSAPP genes SAPP1, SAPP2, and SAPP3 to the virulence of the species. Our results indicate that SAPP1 and SAPP2, but not SAPP3, influence adhesion, host cell damage, phagosome-lysosome maturation, phagocytosis, killing capacity, and cytokine secretion by human peripheral blood-derived macrophages. Purified Sapp1p and Sapp2p were also shown to efficiently cleave host complement component 3b (C3b) and C4b proteins and complement regulator factor H. Additionally, Sapp2p was able to cleave factor H-related protein 5 (FHR-5). Altogether, these data demonstrate the diverse, significant contributions that SAPP1 and SAPP2 make to the establishment and progression of disease by C. parapsilosis through enabling the attachment of the yeast cells to mammalian cells and modulating macrophage biology and disruption of the complement cascade.IMPORTANCE Aspartyl proteases are present in various organisms and, among virulent species, are considered major virulence factors. Host tissue and cell damage, hijacking of immune responses, and hiding from innate immune cells are the most common behaviors of fungal secreted proteases enabling pathogen survival and invasion. C. parapsilosis, an opportunistic human-pathogenic fungus mainly threatening low-birth weight neonates and children, possesses three SAPP protein-encoding genes that could contribute to the invasiveness of the species. Our results suggest that SAPP1 and SAPP2, but not SAPP3, influence host evasion by regulating cell damage, phagocytosis, phagosome-lysosome maturation, killing, and cytokine secretion. Furthermore, SAPP1 and SAPP2 also effectively contribute to complement evasion.


Assuntos
Ácido Aspártico Endopeptidases/metabolismo , Candida parapsilosis/enzimologia , Proteínas Fúngicas/metabolismo , Fatores de Virulência/metabolismo , Ácido Aspártico Endopeptidases/genética , Candida parapsilosis/patogenicidade , Linhagem Celular , Proteínas do Sistema Complemento/imunologia , Proteínas Fúngicas/genética , Humanos , Evasão da Resposta Imune , Macrófagos/microbiologia , Virulência , Fatores de Virulência/genética
7.
Semin Cell Dev Biol ; 85: 110-121, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29174917

RESUMO

Integrins are cell membrane receptors that are involved in essential physiological and serious pathological processes. Their main role is to ensure a closely regulated link between the extracellular matrix and the intracellular cytoskeletal network enabling cells to react to environmental stimuli. Complement receptor type 3 (CR3, αMß2, CD11b/CD18) and type 4 (CR4, αXß2, CD11c/CD18) are members of the ß2-integrin family expressed on most white blood cells. Both receptors bind multiple ligands like iC3b, ICAM, fibrinogen or LPS. ß2-integrins are accepted to play important roles in cellular adhesion, migration, phagocytosis, ECM rearrangement and inflammation. Several pathological conditions are linked to the impaired functions of these receptors. CR3 and CR4 are generally thought to mediate overlapping functions in monocytes, macrophages and dendritic cells, therefore the potential distinctive role of these receptors has not been investigated so far in satisfactory details. Lately it has become clear that a functional segregation has evolved between the two receptors regarding phagocytosis, cellular adhesion and podosome formation. In addition to their tasks on myeloid cells, the expression and function of CR3 and CR4 on lymphocytes have also gained interest recently. The picture is further complicated by the fact that while these ß2-integrins are expressed by immune cells both in mice and humans, there are significant differences in their expression level, functions and the pathological consequences of genetic defects. Here we aim to summarize our current knowledge on CR3 and CR4 and highlight the functional differences between these receptors, involving their expression in myeloid and lymphoid cells of both men and mice.


Assuntos
Complemento C3/metabolismo , Complemento C4/metabolismo , Linfócitos/metabolismo , Células Mieloides/metabolismo , Animais , Complemento C3/imunologia , Complemento C4/imunologia , Humanos , Linfócitos/imunologia , Masculino , Camundongos
8.
Immunol Lett ; 189: 73-81, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28577901

RESUMO

The expression and role of CR3 (CD11b/CD18) and CR4 (CD11c/CD18) in B cells are not yet explored in contrast to myeloid cells, where these ß2-integrin type receptors are known to participate in various cellular functions, including phagocytosis, adherence and migration. Here we aimed to reveal the expression and role of CR3 and CR4 in human B cells. In B cells of healthy donors CR3 and CR4 are scarcely expressed. However, two patients with chronic lymphocytic leukemia (CLL) characterized by a peculiar immune-phenotype containing both CD5-positive and CD5-negative B cell populations made possible to study these molecules in distinct B cell subsets. We found that CD11b and CD11c were expressed on both CD5-positive and CD5-negative B cells, albeit to different extents. Our data suggest that these receptors are involved in spreading, since this activity of CpG-activated B cells on fibrinogen could be partially blocked by monoclonal antibodies specific for CD11b or CD11c. CpG-stimulation lead to proliferation of both CD5-positive and CD5-negative B cells of the patients with a less pronounced effect on the CD5-positive cells. In contrast to normal B cells, CLL B cells of both patients reacted to CpG-stimulation with robust IL-10 production. The concomitant, suboptimal stimulus via the BCR and TLR9 exerted either a synergistic enhancing effect or resulted in inhibition of proliferation and IL-10 production of patients' B cells. Our data obtained studying B cells of leukemic patients point to the role of CR3 and probably CR4 in the interaction of tumor cells with the microenvironment and suggest the involvement of IL-10 producing B cells in the pathologic process.


Assuntos
Linfócitos B/fisiologia , Integrina alfaXbeta2/metabolismo , Leucemia Linfocítica Crônica de Células B/imunologia , Antígeno de Macrófago 1/metabolismo , Receptores de Antígenos de Linfócitos B/metabolismo , Idoso , Antígenos CD18/química , Antígenos CD18/metabolismo , Antígenos CD5/metabolismo , Células Cultivadas , Feminino , Regulação da Expressão Gênica , Humanos , Integrina alfaXbeta2/química , Interleucina-10/metabolismo , Antígeno de Macrófago 1/química , Receptor Toll-Like 9/metabolismo , Microambiente Tumoral
9.
Immunol Lett ; 189: 64-72, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28554712

RESUMO

CR3 and CR4 belong to the family of ß2-integrins and play an important role in phagocytosis, cellular adherence and migration. CR3 and CR4 are generally expected to mediate similar functions due to their structural homology, overlapping ligand specificity and parallel expression on human phagocytes. Although the different signalling pathways of these receptors suggest distinct functions, possible differences are just being revealed. Previously we proved that CR3 plays a key role in the uptake of iC3b-opsonized particles by human dendritic cells. Now, besides measuring the overall phagocytic capacity of cells including the assessment of surface bound as well as internalized particles, we extended our investigations and studied the digestion of the iC3b opsonized antigen by various human phagocytes. The participation of CR3 and CR4 was compared in the process of binding, internalization and digestion of iC3b opsonized Staphylococcus aureus by monocytes, monocyte derived macrophages (MDMs), monocyte derived dendritic cells (MDDCs), and neutrophils. Comparing the activity of the two ß2-integrin type complement receptors we found that CR3 plays a dominant role in the phagocytosis of iC3b opsonized S. aureus by all of these cell types. Studying another important integrin-mediated function we demonstrated earlier that CR4 is dominant in the adhesion of monocytes, MDMs and MDDCs to fibrinogen. Here we studied the participation of CR3 and CR4 in podosome formation by human phagocytes, since these structures are known to play an essential role in cell migration. Our confocal microscopy analysis revealed that both CD11b and CD11c concentrate in the podosome adhesion ring. In summary our data highlight differences in the function of human CR3 and CR4 in the process of uptake and digestion of complement opsonized antigen, while in the process of podosome formation, connected to cellular motility, both receptors equally take part.


Assuntos
Integrina alfaXbeta2/metabolismo , Antígeno de Macrófago 1/metabolismo , Macrófagos/imunologia , Monócitos/imunologia , Neutrófilos/imunologia , Podossomos/ultraestrutura , Infecções Estafilocócicas/imunologia , Staphylococcus aureus/fisiologia , Adesão Celular , Diferenciação Celular , Movimento Celular , Células Cultivadas , Complemento C3b/metabolismo , Humanos , Interleucina-4/metabolismo , Macrófagos/microbiologia , Macrófagos/ultraestrutura , Monócitos/microbiologia , Monócitos/ultraestrutura , Neutrófilos/microbiologia , Neutrófilos/ultraestrutura , Fagocitose , Agregação Patológica de Proteínas
10.
Immunol Rev ; 274(1): 127-140, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27782338

RESUMO

The complement system is a major component of immune defense. Activation of the complement cascade by foreign substances and altered self-structures may lead to the elimination of the activating agent, and during the enzymatic cascade, several biologically active fragments are generated. Most immune regulatory effects of complement are mediated by the activation products of C3, the central component. The indispensable role of C3 in opsonic phagocytosis as well as in the regulation of humoral immune response is known for long, while the involvement of complement in T-cell biology have been revealed in the past few years. In this review, we discuss the immune modulatory functions of C3-derived fragments focusing on their role in processes which have not been summarized so far. The importance of locally synthesized complement will receive special emphasis, as several immunological processes take place in tissues, where hepatocyte-derived complement components might not be available at high concentrations. We also aim to call the attention to important differences between human and mouse systems regarding C3-mediated processes.


Assuntos
Complemento C3/imunologia , Fígado/imunologia , Peptídeos/imunologia , Fagocitose/imunologia , Linfócitos T/imunologia , Animais , Humanos , Imunidade Celular , Imunidade Humoral , Imunomodulação , Camundongos , Modelos Animais
11.
PLoS One ; 11(9): e0163120, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27658051

RESUMO

Complement receptors CR3 (CD11b/CD18) and CR4 (CD11c/CD18) belong to the family of beta2 integrins and are expressed mainly by myeloid cell types in humans. Previously, we proved that CR3 rather than CR4 plays a key role in phagocytosis. Here we analysed how CD11b and CD11c participate in cell adhesion to fibrinogen, a common ligand of CR3 and CR4, employing human monocytes, monocyte-derived macrophages (MDMs) and monocyte-derived dendritic cells (MDDCs) highly expressing CD11b as well as CD11c. We determined the exact numbers of CD11b and CD11c on these cell types by a bead-based technique, and found that the ratio of CD11b/CD11c is 1.2 for MDDCs, 1.7 for MDMs and 7.1 for monocytes, suggesting that the function of CD11c is preponderant in MDDCs and less pronounced in monocytes. Applying state-of-the-art biophysical techniques, we proved that cellular adherence to fibrinogen is dominated by CD11c. Furthermore, we found that blocking CD11b significantly enhances the attachment of MDDCs and MDMs to fibrinogen, demonstrating a competition between CD11b and CD11c for this ligand. On the basis of the cell surface receptor numbers and the measured adhesion strength we set up a model, which explains the different behavior of the three cell types.

12.
Biointerphases ; 11(3): 031001, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27368161

RESUMO

Monocytes, dendritic cells (DCs), and macrophages (MFs) are closely related immune cells that differ in their main functions. These specific functions are, to a considerable degree, determined by the differences in the adhesion behavior of the cells. To study the inherently and essentially dynamic aspects of the adhesion of monocytes, DCs, and MFs, dynamic cell adhesion assays were performed with a high-throughput label-free optical biosensor [Epic BenchTop (BT)] on surfaces coated with either fibrinogen (Fgn) or the biomimetic copolymer PLL-g-PEG-RGD. Cell adhesion profiles typically reached their maximum at ∼60 min after cell seeding, which was followed by a monotonic signal decrease, indicating gradually weakening cell adhesion. According to the biosensor response, cell types could be ordered by increasing adherence as monocytes, MFs, and DCs. Notably, all three cell types induced a larger biosensor signal on Fgn than on PLL-g-PEG-RGD. To interpret this result, the molecular layers were characterized by further exploiting the potentials of the biosensor: by measuring the adsorption signal induced during the surface coating procedure, the authors could estimate the surface density of adsorbed molecules and, thus, the number of binding sites potentially presented for the adhesion receptors. Surfaces coated with PLL-g-PEG-RGD presented less RGD sites, but was less efficient in promoting cell spreading than those coated with Fgn; hence, other binding sites in Fgn played a more decisive role in determining cell adherence. To support the cell adhesion data obtained with the biosensor, cell adherence on Fgn-coated surfaces 30-60 min after cell seeding was measured with three complementary techniques, i.e., with (1) a fluorescence-based classical adherence assay, (2) a shear flow chamber applying hydrodynamic shear stress to wash cells away, and (3) an automated micropipette using vacuum-generated fluid flow to lift cells up. These techniques confirmed the results obtained with the high-temporal-resolution Epic BT, but could only provide end-point data. In contrast, complex, nonmonotonic cell adhesion kinetics measured by the high-throughput optical biosensor is expected to open a window on the hidden background of the immune cell-extracellular matrix interactions.


Assuntos
Técnicas Biossensoriais/métodos , Adesão Celular , Células Dendríticas/fisiologia , Macrófagos/fisiologia , Monócitos/fisiologia , Materiais Revestidos Biocompatíveis , Determinação de Ponto Final , Humanos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...